Cambridge International Examinations

Cambridge Ordinary Level

PHYSICS

5054/22
Paper 2 Theory
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	22

Section A

1 (a) $(v=u+)$ at or $3.4 \times 5.0 \quad \mathrm{C} 1$
$17 \mathrm{~m} / \mathrm{s}$
(b) (i) 0 or zero or no resultant force B1
(ii) straight line of positive gradient from (0,0) B1
horizontal line at $\mathrm{v}>0$ and after initial acceleration B1
straight line from $(0,0)$ to $(5.0,17)$ and straight line from $(5.0,17)$ to at least $(15.0,17)$ B1
(iii) calculate the area under the graph or area of trapezium B1
2 (a) (i) (GPE =)mgh or $45 \times 10 \times 1.8$ B1
810 J B1
(ii) kinetic either order either order B1
thermal/internal/heat/sound either order B1
(b) (i) upwards/centripetal/towards centre (of circle) B1
(ii) it/weight less (than normal contact force) or upward force greater B1
3 (a) (i) 20 N B1
(ii) 1. $(\Gamma=) F d$ or 20×0.35 or 20×0.70 or 14 C1
7.0 N m A1
2. friction (at hinge/seal) or air resistance or to cause an initial acceleration B1
(b) (for other directions) perpendicular distance is lessB1
4 (a) temperature at which liquid/water turns to gas/vapour/steam B1
(b) (i) $(T=) 24\left({ }^{\circ} \mathrm{C}\right)$ or $100-24$ or 76 C1
$(\Delta Q=) m c \Delta T$ or $1.5 \times 4200 \times 76$ C1
$4.8 \times 10^{5} \mathrm{~J}$ A1
(ii) heat is lost (to the surroundings) or evaporation B1
at higher temperatures heat is lost at greater rate B1
(c) (i) stays at $100^{\circ} \mathrm{C} /$ constant B1
(ii) molecules separate/are pulled apart/are far apart/break bonds/ overcome forces of attraction B1
work done separating the molecules or molecules gain PE B1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	22

5 (a) atoms/molecules/particles move/collide B1
atoms/molecules/particles collide with walls/piston B1
collisions cause forces B1
(b) $\left(p_{2}=\right) p_{1} V_{1} / V_{2}$ or $1.1 \times 10^{5} \times 40 / 110$ C1
$4.0 \times 10^{4} \mathrm{~Pa}$ A1
6 (a) any three of:
filament is heated/hot or thermionic (emission) mentioned electrons negative or electrons escape/are emitted electrons attracted/accelerated by a positive charge/high potential/anode opposite charges attract or positive (anode) attracts negative (electrons) B3
(b) no collisions with air/.particles or allows electrons to reach the screen B1
(c) electron beam is a current or moving charges M1
deflected by a magnetic field or experience force in magnetic field A1
7 (a) 94 electrons and 94 protons B1
144 neutrons B1(only) electrons in orbit/surrounding nucleus or (only) protonsand neutrons in nucleusB1
(b) (i) (beta-particles) weak(er) B1
(beta-particles) strong(er) B1
(ii) any two lines fromglasses/goggles or lead container/shield/clothing/glovestweezers/manipulator/carry in large cardboard boxminimise time of exposure/film badgeB2

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	22

Section B

8 (a) (i) $0.83-0.86 \mathrm{~N}$
$\begin{array}{ll}\text { (ii) line curved } & \text { B1 } \\ \text { line (curved) upwards } & \text { B1 }\end{array}$
(b) (i) $(P=) h \rho g$

C1
$0.035 \times 1000 \times 10$ or $3.5 \times 1000 \times 10$ or $35 \times 1000 \times 10$
C1
350 Pa
A1
(ii) $(F=) P A$ or 350×0.0016 or 350×16 or $5600 \quad$ C1
0.56 N

A1
(iii) 1.4 N or (a)(i) + (b)(ii) calculated

B1
$\begin{array}{ll}\text { (c) (i) } \begin{array}{l}\text { (atmospheric pressure) exerts a downward force/pressure } \\ \text { (on top of the block) } \\ \text { (cancels out the) extra upward force/pressure }\end{array} & \text { B1 } \\ \text { B1 }\end{array}$
(ii) (vector) has direction (in addition to magnitude)

B1
(d) any three lines from
force due to water increases
force due to spring decreases
increased pressure (at base)
they add to give a constant value/weight of block or total force constant
B3

9 (a) rate of flow of charge or charge flowing per unit time
B1
(b) (i) 7.5 V

B1
(ii) $(R=) V / I$ or $7.5 / 4.0 \quad \mathrm{C} 1$
1.9Ω A1
(iii) $(P=) V I$ or $6.5 \times 4.0 \quad$ C1

26 W
A1
(iv) resistance increases M1
(reading of ammeter) decreases A1
$\begin{array}{ll}\text { (c) (i) } \begin{array}{l}\text { at least two lines on left and two lines on right of core and } \\ \text { correct shape (by eye) } \\ \text { good shape (by eye) and into poles and no straight sections and } \\ \text { at least one line on each side }\end{array} & \text { B1 } \\ \text { B1 }\end{array}$
at least one arrow N to S (primarily upwards) and none wrong

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	22

(ii) 1 cylinder is magnetised (by induction)
B1
top (of cylinder) is an S-pole
B1
unlike poles attract or S-pole attracts N -pole B1

2 it does not (remain in contact) and iron is temporary/soft magnetic material/core (and cylinder) lose magnetisation

10 (a) (i) $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ B1
(ii) $\begin{array}{ll}(\lambda=) c / f \text { or } 3.0 \times 10^{8} / 4.3 \times 10^{14} \\ \text { C1 }\end{array}$
$7.0 \times 10^{-7} \mathrm{~m}$
(b) (i) decreases
$\begin{array}{ll}\left.\text { (ii) } \begin{array}{ll}\sin (\mathrm{i}\end{array}\right)=\mathrm{n} \times \sin (\mathrm{r}) \text { or } 1.5 \times \sin \left(30^{\circ}\right) \text { or } 0.75 & \mathrm{C} 1 \\ 49^{\circ}\end{array}$
(iii) 41°
$\begin{array}{ll}\text { (c) (i) dispersion at both surfaces and refractions in correct direction } & \text { B1 } \\ & \text { violet/blue light below the red light shown }\end{array}$
(ii) spectrum or band of (continuous) colours or colours of rainbow B1 red, orange, yellow, green, blue, (indigo, violet)
(iii) $1 \times$ marked above red B1

2 it is/black surfaces are good absorbers (of IR radiation)
(d) intruder/human
being emits IR
intruder warm or
IR detected

IR beam broken
or
does not reach detector

IR reflected
B1
or
change detected
B1

A1 B1

B1

B1

B1

